Pikir dan Rasa

cogito ergo sum

Archive for December 2014

Gelombang Sinus Arus Bolak-Balik, Average dan RMS

with 5 comments

Belajar elektronika daya maupun elektrikal pada umumnya, tidak bisa lepas dari berhubungan dangan gelombang sinus (sine curve / sinusoid ). Terutama pada sistem daya, bentuk gelombang ini yang paling umum ditemui. Baik untuk pembangkitan, transimisi maupun distribusi. Umumnya penyaluran energi listrik dengan arus bolak-balik (alternating current, A.C.) menggunakan bentuk ini. Karena itu pengenalan bentuk gelombang ini sangat penting.

Karena itu sebagai kelanjutan dari upaya untuk mencoba belajar dengan sistematis, yang dimulai dengan penggunaan sakelar sebagai dasar untuk analaogi komponen yang lebih kompleks. Lalu dilanjutkan dengan pengenalan diode sebagai kelanjutan dari sakelar elektronik (yang tidak bisa dikendalikan). Maka kali ini akan coba diperkenalkan gelombang bolak-balik sebelum dilanjutkan dengan trafo berbeban resistor lalu penyearah setengah gelombang (half-wave rectifier), lalu penyearah gelombang penuh (full-wave rectifier).

Biasanya alur yang lebih sistematis adalah dengan melakukan simulasi terlebih dahulu dengan perangkat lunak (software) untuk simulasi rangkaian seperti SPICE( PSPICE, LTspice, Multisim, ProSPICE pada Proteus) untuk kemudian diwujudkan dengan komponen sebenarnya (hardware). Tapi untuk memudahkan alur penjelasan, pada tulisan ini arahnya dibalik. Kita akan terlebih dahulu melihat fenomena “aslinya” yang diwujudkan dengan trafo (transformer). Baru kemudian melihat bagaimana hasil simulasi dengan LTspice, apakah bersesuaian dengan kenyataan dengan menggunakan perangkat keras (hardware).

[Untuk memudahkan proses membaca, disarankan untuk membuka halaman ini dalam dua tab atau dua window(jendela). Supaya mudah untuk membaca keterangan dan membandingkan dengan / mengamati gambar. Agar tidak bolak-balik melakukan scroll.]


Gambar 1. Bentuk gelombang sinus tegangan A.C. memperlihatkan bentuk kurva yang tidak ideal.

Pada Gambar 1, terlihat hasil pengukuran dengan DSO (digital storage oscilloscope). Gambar tersebut adalah hasil capture dengan zoom untuk dapat lebih memperlihatkan bahwa pada kenyataan praktik sehari-hari, gelombang A.C. jarang yang memiliki bentuk sempurna seperti hasil perhitungan matematis maupun hasil simulasi yang tidak memasukkan unsur ketidakidealan. Gampang ditebak hasil pengukuran numeris (berupa angka), juga akan sangat mungkin berbeda dengan hasil perhitungan atau simulasi.


Gambar 2. Bentuk gelombang sinus tegangan A.C. dengan jumlah siklus yang lebih banyak.

Pada gambar di atas, lebih banyak siklus tegangan bolak-balik yang ditampilkan. Ini untuk menunjukkan bahwa tegangan A.C. (bisa juga arus A.C. pada kesempatan lain) adalah gelombang periodik yang (sepanjang tidak ada gangguan) akan terus berulang-ulang tanpa henti. Satu periode akan sama dengan periode lainnya, dalam sistem sumber ideal. Pengecualian tentu saja untuk sumber, beban, atau sistem yang berubah bahkan tidak stabil.


Gambar 3. Semua pengukuran numeris ditampilkan pada DSO.

Pada Gambar 3, kita bisa melihat adanya fasilitas pada rata-rata DSO modern yang memungkinkan kita untuk pada satu saat bisa melihat semua parameter yang bisa diukur dari sinyal yang sedang diukur.


Gambar 4. Panduan untuk memahami definisi parameter pada Gambar 3.


Gambar 5. Hasil simulasi dengan LTspice, Vp=52 Volt AC, frekuensi=50Hz.

Gambar 5, menunjukkan bahwa dengan simulator rangkaian seperti LTspice kita bisa membandingkan antara perhtiungan komputer (dengan simulasi) dengan perilaku tegangan/arus A.C.. Di sebelah kiri, bisa dilihat bagaimana pengaturan simulasi dilakukan. Bisa dilihat dimulasikan tanpa beban, artinya pada rangkaian terbuka (open circuit). Begitu juga pada pengujian sebenarnya dengan hardware berupa trafo, kita pada artikel ini hanya menggunakan trafo tanpa beban.


Gambar 6. Fasilitas di LTspice yang memungkinkan pengguna untuk mengetahui nilai rata-rata dan r.m.s.

Gambar 6, menunjukkan bahwa di LTspice kita bisa mengetahui nilai rata-rata (average) dan nilai R.M.S (root mean square) dari suatu gelombang yang disimulasikan.

Mari memulai untuk mempelajari gelombang A.C. dengan data percobaan dan simulasi yang kita miliki. Kita mulai dari Gambar 5, dari gambar itu kita bisa mengetahui bahwa frekuensi dari gelombang tegangan A.C. adalah 50 Hz. Dengan persamaan f= (1/T), dengan T adalah periode, kita bisa mengetahui untuk gelambang dengan frekuensi 50 Hz, periodenya adalah 20 mS. Dengan demikian pada Gambar 5, terdapat dua sikus gelombang penuh, 2*20 mS = 40 mS. Dengan cara yang sama untuk satu detik (1 S) terdapat 50 siklus penuh gelombang sinus (kembali, frekuensi 50 Hz).

Dari Gambar 5, kita juga bisa melihat adalah kesimetrisan pada dua siklus penuh gelombang sinus itu (dua puncak dan dua lembah). Jika antara titik puncak (tertinggi, bernilai paling positif) dengan garis horizontal 0 (nol) dapat dibayangkan sebagai daerah di bawah kurva, maka sama halnya dengan daerah antara lembah (titik terendah, paling negatif) dengan garis 0 dapat juga disebut sebagai daerah di bawah kurva. Jika daerah positif ditambahkan dengan satu daerah negatif pada satu siklus, maka gampang dilihat akan menghasilkan nilai nol. Daerah positif sama nilai absolutnya dengan daerah negatif. Seperti 5+(-5) = 0 atau seperti memiliki tabungan sejuta rupiah tetapi memiliki hutang sejuta rupiah juga.

Cara memahami dengan intuitif, melihat gambar kurva gelombang dapat dilengkapi dengan melihat hasil simulasi pada LTspice (atau perangkat lunak lainnya). Pada Gambar 6, panah nomor satu, kita bisa membaca berapa nilai rata-rata (average) suatu gelombang penuh sinus (dalam simulasi ini dua siklus). Ordenya nano (nV) tentu sangat kecil bila dibandingkan dengan tegangan puncak (Vpeak) yang sebesar 52 V. Pada Gambar 3, kita bisa melihat tegangan rata-rata yang terukur oleh DSO sebesar -800 mV, juga merupakan suatu nilai yang kecil bila dibandingkan dengan tegangan puncaknya. Kita bisa menganggapnya sebagai penyimpangan dan ketidaksempurnaan, kita untuk banyak keperluan praktis menganggapnya sama dengan nol volt pada gelombang sinus ideal.

Sebagai pelengkap dari pengukuran real dengan DSO dan simulasi dengan LTspice, serta pemahaman berdasar pengamatan dan nalar sederhana, kita bisa kembali dengan memahami dasar perhitungan matematisnya. Memang, tidak praktis untuk banyak keperluan sehari-hari tetapi cukup penting dalam fase belajar memahami dasar-dasar suatu bidang ilmu.


Gambar 7. Dasar perhitungan nilai rata-rata gelombang sinus ideal.

Pada Gambar 7, tercantum urutan penurunan persamaan yang membuktikan bahwa menurut perhitungan matematis, satu gelombang sinus ideal, nilai rata-ratanya akan sama dengan nol. Ini berlaku juga pada gelombang sinus untuk tegangan atau arus A.C., dengan catatan gelombangnya ideal. Dan karena sinus ideal sulit didapatkan maka biasanya nilai rata-ratanya tidak tepat nol, melainkan mendekati, dengan nilai yang kecil. Seperti yang ditampilkan pada Gambar 3, dan Gambar 6.

Di Gambar 7, bisa kita lihat rentang perhitungan luasan di bawah kurva dimulai dari 0 sampai 2*pi (dalam radian). Nilai hasil perhitungan integral berhingga itu dikalikan dengan nilai Vp (Vpeak, nilai tegangan puncak). Kemudian untuk memperoleh rata-rata maka dibagi dengan rentang satu siklus penuh gelombang, yaitu 2*pi. Hasilnya, lagi, sama dengan nol volt.

Karena nilai rata-rata (average atau mean) dari suatu gelombang sinus satu siklus penuh sama dengan nol, maka kita mengambil nilai separuhnya. Artinya rentang pengukuran luas hanya dari 0 sampai pi, dan pembagian untuk memperoleh nilai rata-rata juga dipergunakan pi (bukan; 2*pi). Dengan kata lain kita benar-benar hanya mengambil separuh gelombang sinus sebagai nilai rata-rata.


Gambar 8. Perhitungan untuk memperoleh nilai rata-rata setengah gelombang yang mewakili satu gelombang penuh.

Biasanya kita memperoleh nilai rata-rata tegangan atau arus A.C. (hanya setengah gelombang) sebagai 0.637 * Vpeak di banyak sumber acuan maupun bacaan. Dapat dilihat pada Gambar 8, nilai tersebut adalah pembulatan dari perkalian dengan hasil perhitungan nilai integrasi.

Mungkin sampai di sini tampaknya persoalan kita untuk memperoleh suatu nilai pengukuran dari gelombang sinus (teganan atau arus) A.C. sudah selesai. Sebenarnya tidak, masih ada persoalan lain yang berhubungan dengan upaya untuk memperoleh nilai dari tegangan dan arus A.C. Misalnya, persamaan pada Gambar 8, dibangun di atas asumsi bawa bentuk gelombang sinus (sine) dari tegangan atau arus A.C. berbentuk ideal. Kalau bentuk gelombang sinus-nya berbeda jauh dari bentuk idealnya, maka nilainya juga akan meleset jauh. Ini bisa berbahaya. Misalnya jika kita mengetahui nilai puncak maka kita bisa menghitung nilai average-nya untuk hanya setengah gelombang dengan menggunakan 0.637 * Vpeak , tetapi jika bentuk gelombangnya (sebagai perwujudan dari nilai pengukuran tiap selang waktu tertentu) tidak ideal maka hasilnya akan berbeda dari kenyataannya.Perhitungan akan menghasilkan “pengukuran” yang salah.

Misalnya hal lain lagi, kita berkepentingan dengan energi dan laju energi itu dipergunakan. Kita ingin mengetahui daya. Pada sistem/rangkaian arus searah (D.C.) kita dapat relatif mudah mengukur laju penggunaan energi (yaitu daya). Bentuk yang paling mudah diperhatikan dan diukur sejak dahulu kala adalah bentuk panas. Dengan nilai tegangan listrik D.C. tertentu dan nilai tahanan tertentu kita akan mendapatkan aliran listrik dengan nilai tertentu pula (hukum Ohm). Nah kalau perkalian dari tegangan dan arus ini cukup besar (daya) maka kita akan mendapatkan laju penggunaan energi yang besar pula (nilai daya besar). Efeknya pada resistor atau komponen yang sifat resistifnya dominan, akan menimbulkan panas. Nilai besaran panas ini bisa kemudian diukur untuk diperbandingkan. Berapa daya yang diperlukan untuk menhasilkan panas yang sama, dalam keadaan semua faktor lain dibuat sama.

Dengan begitu sesungguhnya kita bisa membandingkan dua sistem sumber daya (sumber tegangan atau arus) berdsarkan efek panas yang dihasilkan pada resistor yang dipakai sebagai beban. Kita “tidak perlu” lagi mengetahui bentuk gelombang masukan (input) tegangan atau arus, dari sudut pandang ini. Kita hanya perlu membandingkan efek panas yang dihasilkan. Jika sistem, sebut saja, A diketahui dengan pasti parameter tegangan, arus dan dayanya sedangkan sistem B tidak kita ketahui, tetapi efek panas yang dihasilkan sama maka keduanya dapat kita katakan sama. Sistem B sama dengan sistem A, dari sudut pandang transfer energi. Cara pembandingan ini memudahkan kita jika gelombang periodik sistem B, katakanlah, tidak mudah untuk diukur.

Dihubungkan dengan pembahasan tentang nilai rata-rata gelombang sinus pada beberapa paragraf sebelumnya, kita bisa membayangkan suatu skenario. Jika gelombang periodik A.C. ternyata tidak berupa sinus murni, maka kita akan mengalami kesulitan pengukuran. Dengan alasan-alasan ini kita memerlukan parameter lain selain rata-rata (average atau mean). Parameter lain itu disebut R.M.S. (root-mean-square). Tinjauan fisi dari RMS sudah diungkapkan di beberapa paragraf sebelum paragraf ini, kita membandingkan efek panas yang dihasilkan.

Tinjauan matematis dari RMS (rms) juga didasarkan dari perhitungan terhadap luasan (daerah) di bawah kurva, dilakukan dengan menggunakan integral (integrasi). Secara sederhana sesungguhnya proses perhitungan mengikuti urutan penamaan; root-mean-square, akar dari rata-rata dari suatu nilai yang dikuadratkan.


Gambar 9. Penyelesaian perhitungan integrasi untuk mendapatkan nilai RMS dari gelombang sinus satu siklus.

Gambar 9 memberikan gambaran bagaimana suatu perhitungan matematis yang lebih formal dilakukan untuk memperoleh suatu nilai rms dari tegangan A.C. dengan bentuk gelombang sinus, satu siklus penuh. Dapat dilihat, sama dengan Gambar 7, rentang pengukuran satu siklus penuh yaitu dari 0 sampai 2*pi.


Gambar 10. Persamaan dan perhitungan RMS gelombang sinus satu siklus.

Gambar 10 merupakan ringkasan yang mempermudah untuk melihat dari mana asal datangnya nilai 0.707 yang terkenal itu :-). Dari gambar ini kita bisa melihat penurunan persamaan bahwa
Vrms = 0.707 * Vpeak

Di penggunaan sehari-hari, untuk banyak pekerjaan dan keperluan biasanya kita jarang mempergunakan persamaan integral untuk mencari nilai rms dari suatu tegangan A.C. :-). Sedikit perkecualian, mungkin untuk analisis sinyal.


Gambar 11. Nilai RMS dengan contoh tegangan simulasi 1 V, normalisasi.

Tidak ada yang baru pada Gambar 11,  gambar ini sengaja dibuat untuk menunjukkan normalisasi. Jika input sama dengan satu, maka nilai lainnya dibandingkan dengannya. Dalam hal ini nilai 0.707 (707 mV) dapat lebih mudah terlihat. Nah karena masih menggunakan perhitungan integral dengan masukkan tegangan puncak (Vpeak) maka perhitungan inipun masih rentan terhadap kesalahan jika gelombang bukan gelombang sinus ideal. Perhitungan Vrms = 0.707 * Vpeak, akan menghasilkan kesalahan, sama dengan perhitungan rata-rata. Tetapi kita mendapatkan suatu konsep yang baik yaitu RMS. Kita bisa mengukur berdasarkan efek panas yang dihasilkan, dan membandingkannya dengan sumber DC rata.

Dengan menggunakan DSO yang memiliki frekuensi cuplik yang tinggi dan memadai untuk tiap keperluan, kita bisa melakukan pengukuran gelombang dengan akurat. Kita bisa merekonstruksi bentuk gelombang yang diukur dengan tepat, sama dengan aslinya. Tetapi pada DMM murah yang banyak dijual, kita tidak seberuntung itu. Nilai tegangan A.C. yang ditampilkan adalah nilai pendekatan dengan mengasumsikan bahwa tegangan A.C. yang diukur adalah tegangan A.C. dengan bentuk gelombang sinus yang ideal. Sekali nilai tertinggi diperoleh, maka nilainya akan dikalikan dengan 0.707 untuk memperoleh nilai rms. Tentu saja seperti yang telah kita lihat pada gambar-gambar hasil pengukuran di artikel ini. Nilai itu bisa sangat mungkin salah, tidak menggambarkan kondisi sesungguhnya.

Alat ukur multimeter yang lebih baik sering disebut sebagai TrueRMS DMM. Sesuai dengan namanya, DMM (digital multi meter) jenis ini tidak menggunakan pendekatan dalam melakukan perhitungan. Melainkan mengukur nilai rms sesungguhnya, baik dengan menggunakan konversi panas, maupun dengan mendayagunakan frekuensi pencacahan yang tinggi. Hanya saja DMM dengan kemampuan True RMS ini harganya, biasanya, masih sangat mahal. Sampai saat tulisan ini dibuat, banyak yang dibuat oleh produsen dengan reputasi baik berharga lebih mahal dari DSO 100 MHz (1 GSa/s) :-D.

Baiklah, dengan demikian kita sudah bisa memahami darimana persamaan:

Vaverage = 0.637 * Vpeak

dan

Vrms = 0.707 * Vpeak

berasal :-). Kita juga sudah memahami makna dari masing-masing cara pengukuran tersebut. Penting untuk mengingat bahwa Vaverage di sini adalah nilai untuk setengah gelombang dari 0 sampai pi (180 derajat). Sedangkan Vrms di persamaan di atas adalah nilai untuk gelombang penuh 2*pi (360 derajat).

Jadi saat membaca bahwa tegangan listrik PLN satu fase adalah 220 V, kita bisa segera mengingat bahwa itu adalah nilai tegangan RMS. Nilai tegangan puncaknya bisa bernilai sekitar 220*sqrt(2) atau kurang lebih sebanding dengan 311.127 VAC.

Update:


Gambar 12. Contoh perhitungan pembuktian dengan kalkulator Algeo.

Pada Gambar 12, perhitungan bisa dilakukan di sistem murah meriah, Android, yang dimiliki oleh banyak orang. Salah satu aplikasi yang telah dicoba mampu menyelesaikan perhitungan semacam ini adalah aplikasi Algeo.


Gambar 13. Perhitungan nilai rata-rata untuk setengah gelombang dengan kalkulator biasa.

Jika memiliki kalkulator elektronik fisik seperti ini, kita bisa memanfaatkannya untuk membuktikan perhitungan nilai rata-rata maupun nilai RMS.


Gambar 14. Perhitungan untuk nilai RMS gelombang sinus dengan hasil fraction.


Gambar 15. Perhitungan nilai RMS untuk gelombang sinus dengan hasil desimal.

Bacaan lebih lanjut yang baik dapat diperoleh di semua link di bawah ini:

  1. http://www.electronics-tutorials.ws/accircuits/average-voltage.html
  2. http://www.electronics-tutorials.ws/accircuits/rms-voltage.html
  3. http://www.sfu.ca/sonic-studio/handbook/Root_Mean_Square.html
  4. http://www.learnabout-electronics.org/ac_theory/ac_waves02.php
  5. http://electrowavecorp.com/power-measurements/
Advertisements

Written by sunupradana

December 31, 2014 at 2:56 pm

Mencari nilai resistor paralel

leave a comment »

Sering kita memerlukan suatu nilai resistansi tertentu untuk suatu aplikasi. Tetapi kadang-kadang nilai itu tidak bisa kita dapatkan pada resistor, misalnya karena resistor yang tersedia tidak cocok atau bahkan memang nilai itu bukanlah nilai standar.

Kita bisa menghitung secara manual dengan trial and error, atau kita bisa mempergunakan bantuan perangkat lunak untuk membantu secara otomatis. Berikut adalah daftar link yang di halaman situsnya terdapat program untuk membantu kita melakukan perhitungan untuk mendapatkan beberapa alternatif kombinasi serial maupun paralel untuk nilai ekivalen yang kita perlukan.

  1. http://www.sengpielaudio.com/calculator-parallel.htm
  2. http://mustcalculate.com/electronics/resistorfinder.php
  3. http://www.qsl.net/in3otd/parallr.html
  4. http://sim.okawa-denshi.jp/en/rercal.php
  5. http://www.daycounter.com/Calculators/Parallel-Resistor-Combination-Calculator.phtml

Semoga bermanfaat.

Written by sunupradana

December 27, 2014 at 9:58 am

IPTEK, tukang, Nazi dan pisau dapur

leave a comment »

Tentang teknologi dan sains kita mendapat manfaat dari pengembangannya di China, Jepang, dan Korsel. Tapi ketiga negara itu juga mendapat bibit pengembangan dan belajar dari setidaknya Amerika Serikat dan Inggris.

Dua negara terakhir itu bisa mengembangkan teknologi dan sains mereka juga berkat jasa para ilmuwan Jerman. Bukan sekedar orang Jerman, mereka sebagian adalah ilmuwan Nazi. Mereka mengabdi pada Hitler, malah ada yang menjadi perwira kehormatan SS.

Di layar latar sy td selesai memutar ulang salah satu dokumentasi mengenai hal ini. Bagaimana teknologi dan sains dikembangkan dari kaum yang jahat. Yang untungnya kejahatannya bisa dihentikan pada waktunya dan ilmunya dimanfaatkan untuk banyak hal yang lebih baik, dengan sedikit pengecualian.

Resiko bahaya ini yang sering dilupakan banyak pihak yang larut heboh dalam gegap gempita teknologi dan sains. Mengajarkan ilmu pada pihak yang salah itu berbahaya, jauh lebih berbahaya daripada memberi pisau dapur kepada perampok.

Belajar dan mengajarkan teknologi atau sains itu sendiri sudah sedemikian susahnya. Karena itu bisa jadi sudah jarang yang mau peduli tepat atau tidak tepatnya, hal-hal yang tidak langsung berkaitan dengan skill. Hal-hal yang justru lebih mendasar, lebih filosofis. Kita hanya peduli untuk menghasilkan ahli, tukang yang ahli.

Padahal dengan ilmu, seseorang dapat lebih dimampukan untuk melakukan kejahatan daripada orang yang “tidak berilmu”. Dapat lebih melegitimasi, menjadi pembenar kegelapan daripada menyebar cahaya. Memanipulasi fakta ilmiah dan menyebar berita salah atau pemahaman keliru yang disengaja kepada publik. Menjadi stempel bagi kejahatan. Semua tidak dilakukan selalu dalam keadaan terpaksa, sebagian memang didasari pada suatu keyakinan. Seperti Wernher von Braun yang menjadi mayor pada pasukan SS milik Nazi.

Seperti pisau dapur ilmu itu dapat dipakai untuk memberi makan bagi banyak orang atau dipakai untuk kejahatan. Sekedar mendapatkan pisau dapur yang sangat tajam, anti karat, kuat dan awet sebenarnya hanyalah separuh jalan. Sekalipun susah dan mungkin rumit, itu masih sebagian dari “cerita”. Siapa yang menguasainya, itu bagian utuh dari cerita. Untuk apa pisau itu dipergunakan, juga bagian dari cerita. Bahkan mungkin penutup cerita yang lebih penting.

Kalau mau meluangkan untuk Googling, kita bisa menemukan nama Robert A.Kehoe. Ini bukan nama orang biasa. Ia adalah seorang ilmuwan. Tetapi kenangan tentangnya tidaklah baik di dunia sains. Ia adalah sedikit contoh ilmuwan modern yang disebut berada dalam daftar pembayaran oleh industri perminyakan untuk menyembunyikan data bukti agar mendukung argumen insdustri perminyakan untuk terus memperoleh untung. Dengan ilmunya, alih-alih mencerahkan ia malah menggelapkan. Ini buat sy masih untung, dasarnya adalah harta, lebih gampang untuk beralih haluan. Kalau dasarnya adalah keyakinan, akan lebih sulit lagi. Ilmu pengetahuan sering tidak berdaya, dah hanya berhenti pada efek permukaan. Terhenti sekedar di permukaan, pada tindakan operasional.

Misalnya seorang mahasiswa bisa jadi ahli dalam merancang pewaktu (timer). Ia bisa memanfaatkan keahliannya untuk merancang bel sekola atau untuk membuat pewaktu bom. Ilmunya sama, tindakan operasionalnya sama, skill yang dipakai sama. Tujuan dan hasilnya berbeda.

Atau menurut berita akhir-akhir ini ada penelitian (Korownyk Christina, Kolber Michael R, McCormack James, Lam Vanessa, Overbo Kate, Cotton Candra et al.) yang mengugkap bahwa rekomendasi dalam acara Dr Oz dan The Doctors tidaklah benar-benar selalu akurat terutama berkaitan dengan diet. Untuk detail nilai persentasi silahkan meilihat di artikel penelitiannya. Padahal acara popular seperti itu menjadi acuan tunggal bagi banyak orang .

Seorang ilmuwan, lengkap dengan gelar Prof atau setidaknya Ph.D. memberikan efek wow yang lebih daripada orang biasa. Karenanya kalau ia melakukan kejahatan, efeknya akan lebih berbahaya. Begitu pula gelar dokter bagi praktisi medis, jauh akan lebih didengar orang banyak daripada orang yang tidak memiliki gelar tersebut. Jadi bayangkan bagaimana Nazi memanfaatkan kecerdasan dan ilmu dari para doktor dan dokter untuk melakukan kejahatan di zaman itu.

Kalau kita terlena dalam berpacu menghasilkan para “tukang yang ahli”, ada baiknya kita melihat kembali ke belakang. Belajar dari era Nazi Jerman dan para ilmuwan pendukungnya.

Di zaman kita ini berbahaya jika alih-alih menyebarkan terang, orang-orang sains malah memelihara gelap. Alih-alih mengajukan teori baru untuk diperiksa rekan sejawat, agar bisa membantah atau mengganti teori lama, malah memelihara dan menyebar pseudoscience.

Sampai adanya teori baru yang diterima tidaklah sebegitu mudah untuk mengarang “teori” sesuai kehendak setiap orang. Akan runtuh bangunan besar sains ini, jika terus dibiarkan seperti itu. Dimulai dari pembiaran yang kecil sampai jadi trend, kembali ke zaman kegelapan abad pertengahan.

Dalam dunia lain, ini seperti para Brahmin dari golongan Brahmana yang tidak percaya akan adanya para dewa . Pengkhianatan tertinggi.
 
 


 

 

 

 

 

 

 

Written by sunupradana

December 26, 2014 at 10:03 am

Parameter penting osiloskop dijital (digital oscilloscope) DSO

leave a comment »

View this document on Scribd

Tautan (link) lain yang bagus untuk dipelajari mengenai beberapa parameter penting dari DSO seperti bandwidth, sample rate, memory depth, resolution and accuracy telah diurutkan sebagai berikut:

  1. http://www.picotech.com/applications/oscilloscope_tutorial.html
  2. http://www.ni.com/white-paper/4333/en/
  3. http://www.tek.com/document/application-note/real-time-versus-equivalent-time-sampling

Written by sunupradana

December 26, 2014 at 9:33 am

Uji penyulutan SCR

with one comment

Dokumentasi awal pengenalan operasi SCR dengan menggunakan dua sumber DC.

[rilis preview]



 



 



 



 

 


LED dipergunakan sebagai beban pada sisi anode dengan aliran arus sebesar 16.99 mA. Tegangan catu daya sebesar 7 VDC, tegangan penyulut sebesar 1.8 VDC dengan arus sebesar 4.68 mA. Tegangan gate ke cathode sebesar 0.754 VDC.


 


Sumber catu daya  sebesar 7.1 VDC, SCR dalam kondisi off. Tidak ada tegangan dan arus penyulutan pada gate. Tegangan antara anode dan cathode dari SCR sebesar 5.03 VDC.

 


Sumber catu daya  sebesar 7.1 VDC, SCR dalam kondisi off, hanya ada arus kecil sebesar 0.03 mA. Tegangan punyulutan di kaki gate sebesar 1.6 VDC dengan arus sebesar 4.61 mA. Tegangan antara anode dan cathode dari SCR sebesar 4.82 VDC. Teganan antara kaki gate ke kaki katode sebesar 0.607 VDC. Katode terhubung langsung dengan terminal negatif sumber (return / common / gnd).

 


Sumber catu daya  sebesar 7.1 VDC, SCR dalam kondisi on, arus mengalir sebesar 17.57 mA menyalakan LED. Tegangan punyulutan di kaki gate sebesar 1.8 VDC (terhadap gnd yaitu terminal negatif sumber) dengan arus sebesar 4.72 mA. Katode terhubung langsung dengan terminal negatif sumber (return / common / gnd).
Tegangan antara anode dan cathode dari SCR sebesar 0.75 VDC.
Teganan antara kaki gate ke kaki katode sebesar 0.750 VDC.

 


Sumber catu daya  sebesar 7.1 VDC, SCR dalam kondisi tetap on, arus mengalir sebesar 16.82 mA menyalakan LED. Tegangan punyulutan di kaki gate dimatikan. Tegangan antara anode dan cathode dari SCR sebesar 0.92 VDC. Tegangan antara kaki gate ke kaki katode sebesar 0.673 VDC. SCR tetap dalam keadaan on walaupun sumber tegangan penyulutan sudah dimatikan, hal ini karena setelah melampaui batas tegangan threshold  untuk latching maka SCR akan tetap on tanpa tegangan penyulutan selama arus yang mengalir antara anode ke katode tetap berada di atas ambang batas holding current.

 

Menurut Littelfuse:

Principal Current − Generic term for the current through the collector junction (the current through main terminal 1 and main terminal 2 of a Triac or anode and cathode of an SCR)

Holding Current (I H ) − Minimum principal current required to maintain the Thyristor in the on state

Latching Current (I L ) − Minimum principal current required to maintain the Thyristor in the on state immediately after the switching from off state to on state has occurred and the triggering signal has been removed

v 0.1.a

v 0.2

update berikut …

Written by sunupradana

December 22, 2014 at 5:04 am

Posted in Components, Electrical, Electronics

Tagged with , ,

Belajar elektronika

leave a comment »

image

#electronicsEngineering

Mulai yang mudah, bertahap, coba ditekuni. Coba dengan sistematis. Jangan sombong belajar dari orang lain. Cobalah.

Berbagilah, terima umpan balik untuk memperkaya.

Terima kenyataan bahwa banyak orang yang lebih jenius, lebih pandai, lebih kreatif, lebih berpengalaman. Jangan mudah patah, cari bantuan.

Coba berdamai dengan diri setelah berusaha dengan keras dan cerdas. 🙂

Written by sunupradana

December 21, 2014 at 9:05 pm

Belajar Menggunakan Diode

with 5 comments

Setelah sebelumnya meninjau tentang switch (sakelar) sebagai sebuah awalan dalam usaha memahami kerja (dan menggunakan) komponen sakelar elektronik berbasis semikonduktor, maka kali ini kita meninjau sejenak tentang diode. Melanjutkan dengen diode penting agar upaya belajar kita berlangsung secara sistematis.

Namun karena keterbatasan waktu pada saat saya menulis artikel ini, maka saya tidak membahas detail tentang diode. Pembaruan (update) akan menyusul kemudian. Sudah cukup banyak tutorial tentang diode yang saya lihat sendiri beredar di Internet. Beberapa yang bagus yang berbasis html akan saya urutkan tautannya (link) di bawah ini. Setelah membaca dan berusaha memahaminya, anda bisa kembali lagi ke halaman ini untuk melanjutkan membaca dan menghubungkan dasar teori yang sudah anda peroleh dengan apa yang akan saya ungkapkan, berurutan di sini.

  1. What is an Ideal Diode?
  2. Sparkfun diodes tutorial
  3. Semiconductor Basics
  4. Tutorial: Electronic Circuits-Diodes/Transistors/FETs, Renesas Engineer School
  5. PN Junction Theory
  6. PN Junction Diode
  7. The Signal Diode
  8. Power Diodes and Rectifiers
  9. Full Wave Rectifier
  10. The Zener Diode (opsional untuk bahasan di artikel ini)
  11. Basics: Introduction to Zener Diodes (opsional untuk bahasan di artikel ini)
  12. The Light Emitting Diode
  13. Diode Tutorial
  14. Wikipedia: Diode
  15. p–n diode
  16. Diode modelling

Berikut adalah gambar karakteristik arus dan tegangan (I-V characteristic) yang ideal dari sebuah diode. Tentu saja komponen ideal ini tidak ada. Namun gambar ini membantu kita untuk lebih memahami dasar kerja sebuah komponen diode.

Gambar di atas adalah gambar dari artikel pada Wikipedia, yaitu p–n diode. Masih dari artikel yang sama kita maju selangkah lagi dengan memperhatikan gambar-gambar berikut:

Gambar di atas memberikan informasi seolah-olah terdapat sebuah sumber tegangan pelawan di dalam komponen diode, sehingga berbeda dengan sakelar ideal, diode memerlukan sejumlah tegangan maju untuk mengatasi tegangan pelawan tersebut.

Pada gambar berikut di bawah ini terlihat bahwa ketidakidealan diode bisa diperlihatkan dengan lebih baik jika ditambahkan resistor pada model.

Adanya kemiringan (gradient / slope) membuat grafik di atas semakin mendekati keadaan yang sesungguhnya pada komponen fisik (riil) diode. Dalam tulisan ini nanti akan saya sertakan gambar yang diperoleh dari DSO.

Pada gambar berikut diperlihatkan grafik yang “maju” selangkah lagi menuju (mendekati) bentuk grafik karakteristik arus-tegangan pada komponen real diode (komponen diode riil). Grafik ini sudah menggambarkan adanya karakteristik arus-tegangan diode pada saat polaritas tegangannya terbalik, lengkap dengan kondisi breakdown.

 

 

Gambar berikut masih dari situs Wikipedia, menggambarkan bahwa kita bisa membagi unjuk karakteristik arus-tegangan diode ke dalam tiga bagian. Hal ini untuk memudahkan pembahasan. Semoga gambar berikut dapat menyegarkan ingatan anda:

Berikut adalah gambar suatu rangkaian (circuit) yang juga akan diwujudkan dalam praktik yang dokumentasinya saya sertakan di tulisan ini. Sumber Wikipedia.org:

 

SIMULASI

Setelah menyegarkan kembali karakteristik diode dengan menggunakan grafik, maka tahap berikutnya adalah melakukan simulasi dengan perangkat lunak (software). Ini bertujuan antara lain agar kita dapat mencoba beberapa skenario (misal beberapa nilai komponen maupun konfigurasi) dengan meminimalkan resiko bahaya maupun mempersingkat waktu percobaan. Untuk simulasi ini kita bisa menggunakan aplikasi LTspice yang secara legal gratis (halal) untuk dipergunakan.

 

UJI COBA KOMPONEN FISIK

Berikutnya setelah melakukan simulasi maka tentu saja kita melakukan uji / percobaan pada komponen diode yang sesungguhnya. Unjuk kerja diode ini seringkali berbeda dengan apa yang tertera di datasheet , bahkan jika dokumen itu memang dikeluarkan oleh perusahaan pembuat diode tersebut. Begitu juga, model diode yang menjadi komponen dalam simulasi sangat mungkin akan berbeda dengan keadaan sesungguhnya dari diode, sekalipun serinya sama. Dan terakhir, karakteristik masing-masing komponen fisik diode bisa jadi akan juga berbeda antara satu komponen dengan komponen yang lain. Walaupun kesemuanya berasal dari seri/tipe yang sama.Variasi ini sungguh pun terjadi biasanya dalam keadaan normal tidak akan berbeda terlalu jauh.

Berikut foto set-up pengujian komponen riil:

 

 

Sebagai perbandingan dan untuk memudahkan, dua osiloskop (oscilloscope) dipergunakan dalam percobaan ini.

 

 

Percobaan pertama dilakukan dengan menggunakan rangkaian dasar berikut:


 

Rangkaian di atas jika disimulasikan akan menghasilkan gfrafik sebagai berikut:


Hasilnya tidak lain merupakan grafik penyearah setengah gelombang yang sudah kita akrab dan gampang dikenali. Tegangan listrik antara anode dan katode di simulasi ini ditulis sebagai V(ade,ktd). Sedangkan pada simulasi ini tegangan listrik antara node ktd (katode dari diode) ke titik referensi (gnd) cukup ditulis sebagai V(ktd). Arus listrik yang mengalir pada dua atau lebih komponen yang terhubung seri adalah sama, karena itu arus yang mengalir pada diode sama dengan yang mengalir pada resistor. Jika anda jeli maka anda bisa menemukan bahwa gelombang tegangan sumber yang di rangkaian simulasi ini bertanda V(ade), seolah-olah dipotong menjadi dua bagian. 

 

Simulasi YT ini relatif lebih mudah untuk dicoba dengan komponen fisik, karena itu kita lakukan terlebih dahulu. Berikut adalah uji coba rangkaian fisik untuk komponen diode. Pertama dipergunakan oscilloscope kecil satu kanal (DSO Nano) untuk memeriksa tegangan terminal masukan (input), V(ade)



 

Sedangkan dua gambar berikut adalah hasil capture dari DSO 100MHz:



 

Di DSO kita biasanya bisa menggunakan fasilitas kursor untuk melakukan pengukuran secara “manual”. Baik untuk DSO Nano maupun DSO 100MHz dua kanal. Misalnya untuk DSO Nano:


Bisa dilihat nilai delta untuk setengan gelombang adalah 10.0 mS dan delta untuk tegangan dasar ke puncak sebesar 16.6 V. Sedangakan pada gambar di bawah ini, masih menggunakan DSO Nano, kita bisa melihat bahwa tegangan antara anode ke katode dari diode adalah sebesar 0.78 Volt, tidak jauh berbeda dengan hasil simulasi dengan LTspice menggunakan model diode dari tipe yang sama.

 

 

Percobaan dengan menggunakan DSO 100MHz akan memberikan kemudahan baik dari segi jumlah kanal (ada dua) maupun kemampuan pencuplikan (BW, sampling). Namun agar memberikan hasil yang benar perlu diperhatikan penggunaan kanal dan probe dengan tepat pada rangkaian.

Kanal pertama (CH1) yang juga merupakan kanal untuk sumbu X pada mode tampilan XY diberi warna pengenal merah. Sedangkan kanal kedua (CH2) yang juga merupakan kanal untuk sumbu Y pada mode tampilan XY diberi warna pengenal biru.

Pada pengukuran dengan mode tampilan YT (besaran tegangan pada sumbu Y dan besaran waktu T pada sumbu X), CH1 dipakai untuk mengukur besar tegangan (jatuh tegangan) pada komponen diode. Probe CH1 ditempatkan di anode pada diode dan koneksi GND dari DSO pada katode dari diode. Pengaturan polaritas pengukurannya persis sama dengan pengukuran pada simulasi LTspice, V(ade,ktd). 

Yang agak repot memang untuk melakukan pengukuran tegangan di antara kaki-kaki resistor, dalam konfigurasi dan percobaan ini. Karena kita tidak ingin melakukan operasi pengurangan matematis dengan DSO. Maka untuk tegangan pada diode maupun resistor masing-masing diukur benar-benar paralel dengan komponennya masing-masing. Karena probe yang dipakai bukan tipe diferensial maka timbul kesulitan. Kita hanya bisa menggunakan satu titik (node) sebagai acuan, yang dihubungakan dengan GND pada DSO. Karena pengukuran CH1 sudah menggunakan node antara katode pada diode dengan resistor sebagai GND, maka CH2 harus menggunakan node yang sama sebagai GND. Artinya probe CH2 justru harus ditempatkan di titik kembali sumber catu daya (ground pada transformer). Dengan demikian nanti ada saatnya kita perlu menggunakan fasilitas invert untuk tampilan gelombang pada CH2, agar polaritasnya sesuai yang kita perlukan.

 

Berikut tampilan gelombang tegangan pada diode (kuning) dan resistor (biru) yang belum dibalik.


 

Berikutnya gelombang tegangan pada resistor yang diukur dengan CH2 (biru) dan tampilannya belum dibalik, dipisahkan dengan tampilan gelombang CH1 (kuning) yang mengukur tegangan di diode. Tegangan pada CH2 dinaikkan vertikal ke atas sebanyak 17 Volt.


 

Berikutnya gelombang tegangan di resistor yang diukur dengan CH2 (biru) dibalik (inverted). Sehingga yang aslinya mengukur V(gnd,ktd) menjadi V(ktd,gnd) dalam tampilan sebagaimana pada gambar berikut.


 

Tampilan gelombang dua kanal (CH1 dan CH2) yang tadinya sengaja dipisahkan, sekarang digabung kembali dengan melakukan reset untuk posisi vertikal pada keduanya.


Jika gambar di atas diperhatikan, akan persis seperti bentuk gelombang tegangan pada terminal masukan. Pemotongan tidak persis pada 0.00 mV, melainkan sekitar 0.7V ~ 0.8V karena diode membutuhkan tegangan maju untuk dapat beroperasi, menghantar (kondisi ON).

 

Berikut ini adalah salah satu fasilitas pada DSO yang amat memudahkan pengguna untuk melakukan pengukuran. Warna kuning dan identitas CH1 menunjukkan dengan jelas bahwa kesemua parameter yang ditampilkan adalah pengukuran untuk tegangan yang diukur pada kanal pertama (CH1 /  X / merah).


 

Sedangkan pada gambar di bawah tampilan berwarna cyan menunjukkan bahwa pengukuran untuk kanal CH2. Tetapi perlu diingat ini adalah untuk tampilan tegangan pada resistor yang diukur dengan CH2 tetapi gelombangnya sudah dibalik (inverted).


 

Berikut adalah tampilan informasi untuk CH2 yang gelombangnya belum dibalik.


 

Gambar berikut ini memperlihatkan bahwa besar tegangan R.M.S. pada diode dan resistor bernilai sama. 

 

 

 

TEGANGAN BIAS MAJU

Berikut ini adalah rangkaian simulasi yang dipergunakan untuk mempelajari tegangan maju atau tegangan bias maju pada diode.  


 

Hasil simulasi rangkaian. Terlihat pergerakan naik dari arus sebagai akibat bias maju dapat tampak lebih jelas jika kita melakukan zoom atau mempersempit rentang pengamatan.


Dari gambar di atas dapat dilihat bahwa pada simulasi adalah mudah untuk melakukan pengukuran tegangan pada V(ktd,gnd) atau bisa ditulis sebagai V(ktd). Bahkan pengukuran arus pada diode maupun resistor dapat dengan mudah dilakukan, tidak demikian halnya jika kita mencoba mereplikasi percobaan ini pada XY mode dengan komponen fisik dan DSO dengan probe standar.

Pertama perlu diingat untuk konfigurasi rangkaian ini sebenarnya pengukuran tegangan di resistor dimaksudkan untuk mengukur nilai arus yang melintas di rangkaian. Dengan mempergunakan hukum Ohm, arus dapat dihitung jika nilai resistansi dan nilai tegangan listrik sudah diketahui. Untuk itu jika memungkinkan nilai resistansi hendaknya adalah nilai yan mudah untuk perhitungan matematis. Biasanya kelipatan 1, 10 atau 100. Jika persediaan terbatas, seperti pada uji kali ini, perhitungan masih mudah jika kita kalkuator (termasuk app) tersedia dekat dengan tempat pengujian.

 

Gambar berikut adalah hasil uji dengan komponen fisik dan DSO. Terlebih dahulu diingat dan dipastikan bahwa CH2 telah dibalik (inverted), agar arah arus bisa sesuai (mengikuti arah arus konvensional) dari anode ke katode pada diode. 

 


 

 

SIMULASI WILAYAH BREAKDOWN

Berikut adalah simulasi tegangan tembus (breakdown voltage) untuk diode 1N4007.



 

SIMULASI VARIABLE RESISTOR

Dua gambar berikut adalah simulasi pengaruh nilai resistor pada rangkaian yang tegangan masukkannya dinaikkan berjangkah dari 0 V sampai 1 V, dengan kenaikan sebesar 1 mV.



 

SIMULASI VARIABLE RESISTOR DENGAN CATU DAYA TEGANGAN SINUS

Terakhir adalah simulasi catu daya arus bolak-balik dengan beberapa nilai resistor pada rangkaian.



Tiga bagian terakhir dapat memberikan gambaran bagaimana perangkat lunak simulasi rangkaian berbasis SPICE seperti LTspice sungguh sangat membantu dan bermanfaat. Sebelumnya dalam tulisan ini telah kita bandingkan antara hasil simulasi dengan hasil percobaan dengan komponen fisik.


Written by sunupradana

December 21, 2014 at 2:17 am